Teaching Scheme						Chemical Engineering Practical (22PCM213P) Examination Scheme					
L	MS	ES	IA	LW	LE/Viva	10tal Walks					
0	0	2	1	2				50	50	100	

COURSE OBJECTIVES

- > Develop student's ability to investigate and experiment.
- Develop experimental skills.
- > Analyze the data and interpret the results.
- > Report observations and results in appropriate manner.

LIST OF EXPERIMENTS

I. HEAT TRANSFER EXPERIMENTS

- 1. Determination of thermal conductivity of solids.
- 2. Determination of heat transfer by forced convection.
- 3. To compare overall heat transfer coefficients for parallel flow and counter flow in double pipe heat exchanger.
- 4. To study the performance of shell and tube heat exchanger and calculate overall heat transfer coefficient.
- 5. Determination of heat transfer coefficient in laminar flow.
- 6. Radiation heat transfer.

II. MECHANICAL OPERATION EXPERIMENTS

- 1. Performance of sieve analysis of a given sample and determination of effectiveness of a screen.
- 2. Study the performance and characteristics of size reduction equipment.
- 3. Determine of the collection efficiency of the cyclone separator.
- 4. Study the performance of plate and frame filter press.
- 5. Study the performance of batch sedimentation.
- 6. Study the operational characteristics of batch centrifuge.

Max. 28 Hr.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1: Determine the rate of heat transfer by conduction, convection and radiation.

CO2: Estimate the overall heat transfer coefficient of heat exchangers.

CO3: Design and analyze various parameters of heat transfer equipment.

CO4: Analyze the efficiency of various size reduction equipment.

CO5: Evaluate the efficiency of cyclone separator and filter press.

CO6: Analyze sedimentation and centrifugal separation operations.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100Exam Duration: 3 Hr.Part A: Lab Work50 MarksPart B: Lab Exam/Viva50 Marks